Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 106: 104372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244879

RESUMO

Interaction of nanoplastics (NPls) with other environmental contaminants could affect their uptake by the organisms and their toxicity. Thus, the present study aims to investigate the polystyrene NPls (44 nm) interaction with the antidepressant amitriptyline (AMI) and its toxicity to Danio rerio embryos. A similar toxicological profile for NPls + AMI exposure was found for most of the evaluated endpoints, comparing with AMI single exposure, showing that the presence of NPls did not modulate the AMI toxicity. However, the behavioral assessment showed a different pattern with hypoactivity for the NPls + AMI exposure (NPls - hyperactivity; AMI - no effect). Interaction effects between NPls and AMI were also found in the protein contents (antagonism) and in the total glutathione content (synergism). This study highlights the complexity and unpredictability of NPls interaction with pharmaceuticals, important for an accurate environmental risk assessment and for the developing of effective strategies and interventions against plastic pollution.


Assuntos
Amitriptilina , Poluentes Químicos da Água , Animais , Amitriptilina/toxicidade , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Poliestirenos/toxicidade
2.
Sci Total Environ ; 912: 169437, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128671

RESUMO

This work aims to increase the efficiency of an activated carbon produced from brewery waste (AC) in the removal of three target antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and ciprofloxacin (CIP)) by surface incorporation of oxygen, nitrogen or sulfur groups. AC was produced using spent brewery grains (the most abundant waste from the brewing industry) as raw material, K2CO3 as activating agent and microwave energy for pyrolysis. Then, seven different functionalized AC were prepared, characterized for their physicochemical properties, and tested for adsorption (%) of SMX, TMP and CIP from three different matrices (ultrapure water (pH ~5-6), buffered ultrapure water (pH 8), and effluent from a municipal wastewater treatment plant (WWTP effluent (pH 8)), under batch operation. Based on the obtained results, an oxygen functionalized AC was selected for further characterization and studies on the adsorption of the target antibiotics from the WWTP effluent. Kinetic results fitted the pseudo-second order model and the equilibrium isotherms were adequately described by the Langmuir model, reaching maximum adsorption capacities (qm) of 124 ± 1 µmol g-1, 315 ± 2 µmol g-1 and 201 ± 5 µmol g-1 for SMX, TMP and CIP, respectively. The selected functionalization increased qm by up to 58 % in comparison with the non-functionalized AC. The oxygen modified AC produced from a biomass waste remarkably improved its performance for an efficient application in the removal of antibiotics from wastewater.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/química , Águas Residuárias , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Sulfametoxazol/química , Trimetoprima , Ciprofloxacina , Adsorção , Cinética , Água , Oxigênio , Concentração de Íons de Hidrogênio
3.
Environ Toxicol Pharmacol ; 103: 104258, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666394

RESUMO

In aquatic environments, nanoplastics (NPls) can adsorb pharmaceuticals. However, throughout the scientific community, there is scarce knowledge about the interactive effects of the mixture nanoplastics (NPls) with pharmaceuticals to aquatic organisms. Therefore, this study aimed to investigate if the pharmaceutical diphenhydramine (DPH) toxicological effects alters when in presence of polystyrene NPls (PSNPls). To achieve this, Daphnia magna immobilization and different biochemical biomarkers (48-hours exposure) were assessed. Synergistic interactions occurred at environmentally relevant concentrations, PSNPls+DPH induced oxidative damage, whereas no effect was observed at single exposures. With the increase of PSNPls concentration, the DPH concentration causing 50% of effect (EC50) for organisms' immobilization decreased to 0.001 mg/L. In silico analysis suggested that the DPH toxicity to D. magna occurs via the sodium-dependent serotonin transporter. The results showed interactive effects between PSNPls and DPH (implying harmful effects on D. magna), allowing more thoughtful decisions by society and policymakers regarding plastics and pharmaceuticals.

4.
NanoImpact ; 30: 100456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841353

RESUMO

Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30-40%). At the biochemical level, increased glutathione S-transferases (55-122%) and cholinesterase (182-343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination - NPLs + DPH (even at concentrations as low as 10 µg/L of DPH) - were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.


Assuntos
Difenidramina , Peixe-Zebra , Animais , Difenidramina/toxicidade , Microplásticos/toxicidade , Antagonistas dos Receptores Histamínicos , Preparações Farmacêuticas
5.
J Hazard Mater ; 443(Pt B): 130258, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36351346

RESUMO

Pharmaceuticals are able to evade conventional wastewater treatments and therefore, are recurrently found in the environment with proven potential to cause harm to human and wildlife. Adsorption onto activated carbon (AC) is a promising complement. However, AC production from non-renewable resources and its difficult after-use recuperation are prohibitive. Hence, a waste-based magnetic activated carbon (MAC) was produced from paper mill sludge, via an ex-situ synthesis, for the adsorptive removal of carbamazepine (CBZ), sulfamethoxazole (SMX) and ibuprofen (IBU) from ultrapure water and wastewater. The MAC was obtained through the promotion of electrostatic interactions between magnetic and activated carbon particles in a water suspension at controlled pH between the points of zero charge of both surfaces. The optimized condition (MACX3) presented remarkable properties regarding specific surface area (SBET=795 m2 g-1) and saturation magnetization (MS=19 emu g-1). Kinetic and equilibrium adsorption studies were performed under batch conditions. Adsorption equilibrium was reached in up to 30 min for all pharmaceuticals in both matrices, proving the low dependence on the adsorbate and the broad applicability of MACX3 in pharmaceutical adsorption. Regarding equilibrium experiments, high Langmuir maximum adsorption capacities (qm) were achieved in ultrapure water (up to 711 ± 40 µmol g-1). Equilibrium studies in wastewater revealed a decay in qm when compared to ultrapure water: 28% for CBZ (468 ± 20 µmol g-1 (111 ± 5 mg g-1)), 78% for SMX (145 ± 10 µmol g-1 (37 ± 3 mg g-1)) and 62% for IBU (273 ± 8 µmol g-1 (56 ± 2 mg g-1)), attributed to the wastewater pH, which dictates the speciation of the pharmaceuticals and controls electrostatic interactions between pharmaceuticals and MAC, and to competition effects by organic matter. It was demonstrated the promising applicability of a waste-based ex-situ MAC, rapidly retrievable from water, as an alternative tertiary wastewater treatment for pharmaceuticals removal.


Assuntos
Carvão Vegetal , Águas Residuárias , Humanos , Adsorção , Sulfametoxazol , Carbamazepina , Água , Ibuprofeno , Preparações Farmacêuticas , Fenômenos Magnéticos
6.
Environ Int ; 164: 107263, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504231

RESUMO

The main aim of the study is to evaluate the effects of the pharmaceutical diphenhydramine (DPH) on embryo-larvae Danio rerio across distinct levels of organization - individual and subcellular - and correlate those effects with the DPH mode of action (MoA) assessed by in silico analysis. An embryos heartbeat rate reduction was observed at 10 mg/L DPH, but 0.001 to 10 mg/L did not significantly affect the zebrafish survival, hatching and morphology. Larvae swimming distance decreased (hypoactivity) at 1 and 10 mg/L DPH. Moreover, the straightforward movements decrease and the increase in the zigzag movements or movements with direction changes, shown an erratic swimming behavior. Energy budgets decreased for lipid (0.01 mg/L DPH) and carbohydrate (10 mg/L DPH) contents. Cholinesterase (neural function) and glutathione S-transferase (Phase II biotransformation/antioxidant processes) increased their activities at 10 mg/L DPH, where a decrease in the total glutathione content (antioxidant system) was observed. DNA damage was found at 0.01 and 10 mg/L DPH. However, a DNA repair occurred after subsequent 72 h in clean media. The in silico study revealed a relevant conservation between human and zebrafish DPH target molecules. These data provide a valuable ecotoxicological information about the DPH effects and MoA to non-target organisms.


Assuntos
Difenidramina , Poluentes Químicos da Água , Peixe-Zebra , Animais , Antioxidantes , Difenidramina/toxicidade , Embrião não Mamífero , Humanos , Larva , Poluentes Químicos da Água/toxicidade
7.
J Environ Manage ; 313: 115030, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417811

RESUMO

In the present study, waste-based biochar functionalized with titanium dioxide (TiO2) and afterwards magnetized by an ex-situ approach, defined as synthetic photosensitizer (SPS), was explored for the photocatalytic degradation of sulfadiazine (SDZ), an antibiotic widely used in the aquaculture industry, under solar irradiation. The use of the SPS enhanced the photodegradation efficiency, with a half-life time (t1/2) reduction from 12.2 ± 0.1 h (without SPS) to 5.6 ± 0.4 h. The applied magnetization procedure allowed to obtain a SPS with good reusability for SDZ photodegradation even after five consecutive cycles. To evaluate the effects on marine bivalves of SDZ, before and after photodegradation and in presence or absence of the SPS, a typical bioindicator species, the mussel Mytilus galloprovincialis, was used and different biochemical markers were analysed. Results obtained indicated that the exposure to SDZbefore irradiation, both in absence and presence of SPS, caused an increase in mussels' metabolism and defence mechanisms, evidencing great biochemical impacts. However, after irradiation (in the absence and presence of SPS), biochemical responses were similar to those observed in organisms exposed to control conditions, without SDZ. Therefore, this work provided a promising eco-friendly treatment for the removal of SDZ from aquaculture effluents.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Carbono , Fenômenos Magnéticos , Mytilus/metabolismo , Fotólise , Sulfadiazina , Titânio , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 303: 119166, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306087

RESUMO

Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects - no interaction, synergism and antagonism - between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Carbamatos , Catalase , Ecossistema , Embrião não Mamífero , Glutationa , Herbicidas/toxicidade , Microplásticos , Transferases/farmacologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
9.
J Hazard Mater ; 431: 128556, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255334

RESUMO

This study aimed at optimizing the one-step chemical activation and microwave pyrolysis of an agro-industrial waste to obtain a microporous activated carbon (AC) with superior textural and adsorptive properties by a fast, low-reagent and low-energy process. Spent brewery grains were used as precursor, and the antibiotics sulfamethoxazole (SMX), trimethoprim (TMP) and ciprofloxacin (CIP) were considered as target adsorbates. A fractional factorial design was applied to evaluate the effect of the main factors affecting the preparation of AC (activating agent, activating agent:precursor ratio, pyrolysis temperature and residence time) on relevant responses. Under optimized conditions (K2CO3 activation, pyrolysis at 800 °C during 20 min and a K2CO3:precursor ratio of 1:2), a microporous AC with specific surface area of 1405 m2 g-1 and large adsorption of target antibiotics (82-94%) was obtained and selected for further studies. Equilibrium times up to 60 min and maximum Langmuir adsorption capacities of 859 µmol g-1 (SMX), 790 µmol g-1 (TMP) and 621 µmol g-1 (CIP) were obtained. The excellent textural and adsorptive properties of the selected material were achieved with a very fast pyrolysis and low load of activating agent, highlighting the importance of optimization studies to decrease the environmental and economic impact of waste-based AC.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal/química , Cinética , Micro-Ondas , Pirólise , Sulfametoxazol/química , Trimetoprima , Água , Poluentes Químicos da Água/química
10.
Sci Total Environ ; 824: 153591, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35122849

RESUMO

In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 µg/L) and the antihistamine cetirizine (CTZ, 0.6 µg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Bivalves/metabolismo , Carbamazepina/metabolismo , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Preparações Farmacêuticas/metabolismo , Água do Mar/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 806(Pt 1): 150369, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571231

RESUMO

In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 µg/L) and the antihistamine cetirizine (CTZ, 0.6 µg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.


Assuntos
Bivalves , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Anticonvulsivantes , Biomarcadores/metabolismo , Bivalves/metabolismo , Antagonistas dos Receptores Histamínicos , Estresse Oxidativo , Salinidade , Poluentes Químicos da Água/toxicidade
12.
J Environ Manage ; 294: 112937, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119993

RESUMO

Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO2) composite materials on the photodegradation of two antibiotics widely used in aquaculture (sulfadiazine (SDZ) and oxolinic acid (OXA)) was assessed. Four materials were synthesized: BCMag (magnetized BC), BCMag_TiO2 (BCMag functionalized with TiO2), BC_TiO2_MagIn and BC_TiO2_MagEx (BC functionalized with TiO2 and afterwards magnetized by in-situ and ex-situ approaches, respectively). SDZ half-life time (t1/2) noticeably decreased 3.9 and 3.4 times in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively. In the case of OXA, even though differences were not so substantial, the produced photocatalysts also allowed for a decrease in t1/2 (2.6 and 1.7 times, in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively). Overall, the here synthesized BC/TiO2 magnetic nanocomposites through a circular economy process are promising photocatalysts for a sustainable solar-driven removal of antibiotics from aquaculture effluents.


Assuntos
Antibacterianos , Nanocompostos , Aquicultura , Catálise , Carvão Vegetal , Luz Solar , Titânio
13.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499098

RESUMO

In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22-27 emu g-1), and their high SBET (741-795 m2 g-1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L-1).

14.
Environ Sci Pollut Res Int ; 28(15): 18314-18327, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32474779

RESUMO

The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters. Graphical abstract.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbamazepina/análise , Carvão Vegetal , Ferro , Fenômenos Magnéticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 752: 141662, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889260

RESUMO

This work aimed at the microwave-assisted production of activated carbon (AC) from primary paper mill sludge (PS) for the adsorption of antibiotics from water. Production conditions, namely pyrolysis temperature, pyrolysis time and activating agent (KOH):PS ratio, were optimized as a function of product yield, specific surface area (SBET), total organic carbon (TOC) content and adsorptive removal percentage of two target antibiotics (amoxicillin (AMX) and sulfamethoxazole (SMX)). Under the optimized conditions (pyrolysis at 800 °C during 20 min and a KOH:PS ratio of 1:5), a microporous AC (MW800-20-1:5, with SBET = 1196 m2 g-1, TOC = 56.2% and removal of AMX and SMX = 85% and 72%, respectively) was produced and selected for further kinetic and equilibrium adsorption studies. The obtained results were properly described by the Elovich reaction-based kinetic model and the Langmuir equilibrium isotherm, with maximum adsorption capacities of 204 ± 5 mg g-1 and 217 ± 8 mg g-1 for AMX and SMX, respectively. Considering the satisfactory comparison of these results with the performance of commercial and alternative AC produced by conventional pyrolysis, this work demonstrated the feasibility of the microwave-assisted production of environmentally and energetically sustainable waste-based AC to be applied in the efficient removal of antibiotics from water.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Antibacterianos , Cinética , Micro-Ondas , Água , Poluentes Químicos da Água/análise
16.
Aquat Toxicol ; 230: 105673, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221665

RESUMO

The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam's metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and protein carbonylation levels), especially when both drugs were combined. This may result from clam's defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems.


Assuntos
Anticonvulsivantes/toxicidade , Bivalves/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Bivalves/metabolismo , Mudança Climática , Interações Medicamentosas , Modelos Teóricos , Oceanos e Mares , Temperatura
17.
Polymers (Basel) ; 12(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575714

RESUMO

In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g-1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater.

18.
Environ Sci Pollut Res Int ; 27(29): 36463-36475, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556991

RESUMO

Spent brewery grains, a by-product of the brewing process, were used as precursor of biochars and activated carbons to be applied to the removal of pharmaceuticals from water. Biochars were obtained by pyrolysis of the raw materials, while activated carbons were produced by adding a previous chemical activation step. The influence of using different precursors (from distinct fermentation processes), activating agents (potassium hydroxide, sodium hydroxide, and phosphoric acid), pyrolysis temperatures, and residence times was assessed. The adsorbents were physicochemically characterized and applied to the removal of the antiepileptic carbamazepine from water. Potassium hydroxide activation produced the materials with the most promising properties and adsorptive removals, with specific surface areas up to 1120 m2 g-1 and maximum adsorption capacities up to 190 ± 27 mg g-1 in ultrapure water. The adsorption capacity suffered a reduction of < 70% in wastewater, allowing to evaluate the impact of realistic matrices on the efficiency of the materials.


Assuntos
Poluentes Químicos da Água/análise , Água , Adsorção , Carbamazepina/análise , Carvão Vegetal , Águas Residuárias
19.
Anal Bioanal Chem ; 412(17): 3983-4008, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32088755

RESUMO

The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations of these contaminants in the aquatic environment, namely high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, usually coupled to different types of detectors, which need to be complemented with time-consuming and costly sample cleaning and pre-concentration procedures. Generally, the enzyme-linked immunosorbent assay (ELISA), as other immunoassay methodologies, is mostly used in biological samples (most frequently urine and blood). However, during the last years, the number of studies referring the use of ELISA for the analysis of pharmaceuticals in complex environmental samples has been growing. Therefore, this work aims to present an overview of the application of ELISA for screening and quantification of pharmaceuticals in the aquatic environment, namely in water samples and biological tissues. The experimental procedures together with the main advantages and limitations of the assay are addressed, as well as new incomes related with the application of molecular imprinted polymers to mimic antibodies in similar, but alternative, approaches. Graphical Abstract.


Assuntos
Monitoramento Ambiental/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/química , Água/análise
20.
Sci Total Environ ; 718: 137272, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32109811

RESUMO

The adsorption of pharmaceutical substances using carbonaceous materials, such as activated carbon (AC), biochar (BC) and hydrochar (HC), has received substantial attention by researchers working on water treatment, due to the simplicity, low-cost and high performance of this process. In order to widen the potentiality of these carbonaceous materials and to overcome some of their limitations, particularly the inefficient separation of powdered formulations from treated water, the incorporation of magnetic nanoparticles has been explored. The recovery of magnetic carbon materials (MCM) from the treated water can be attained by applying an external magnetic field, avoiding inefficient and costly filtration and centrifugation processes, typically applied in the case of non-magnetic carbonaceous adsorbents. In the last ten years, some work has been devoted to the preparation of MCM specifically from AC (MCACM), biochar (MCBCM) and hydrochar (MCHCM). This review aims to present the different aspects of using MCM in water treatment, namely in the removal of pharmaceutical compounds. The synthesis routes used to produce MCM, their physical, morphologic and chemical features, and their application in the removal of these micro-organic contaminants from water will be assessed. The advantages and disadvantages of using MCM in water treatment, and their comparative performance with the carbonaceous non-magnetic precursors will be also discussed in this review.


Assuntos
Fenômenos Magnéticos , Purificação da Água , Adsorção , Carvão Vegetal , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...